Total Possible Poker Hands

Posted on by admin

There are 10 possible 5 card poker hands: royal flush, straight flush, four of a kind, full house, flush, straight, three of a kind, two pair, one pair, high card. There are 1,326 possible 2 card starting hands in Texas Hold'em. A Poker hand consists of five cards a. Find the total number of possible five-card poker hands b. Find the number of ways in which four aces can be selected c. Find the number of ways in which one king can be selected d. Use the Fundamental Counting Principle and your answers from parts A and C to find the number of ways of getting four aces and one king e.find the probability of getting a.

There are 52 cards in a deck, 13 of each suit, and 4 of each rank with 1326 poker hands in total. To simplify things just focus on memorizing all of the potential combos to start: 16 possible hand combinations of every unpaired hand; 12 combinations of every unpaired offsuit hand; 4 combinations of each suited hand; 6 possible combinations of. There are 1326 distinct possible combinations of two hole cards from a standard 52-card deck in hold 'em, but since suits have no relative value in this poker variant, many of these hands are identical in value before the flop. There are 1,326 possible combinations of cards from a standard deck but there are only 169 non-equivalent starting hands in poker. This number is made up of 13 pocket pairs, 78 suited hands and 78.

For a great training video on poker combinatorics, check out this poker combos video.

'Combinatorics' is a big word for something that isn’t all that difficult to understand. In this article, I will go through the basics of working out hand combinations or 'combos' in poker and give a few examples to help show you why it is useful.

Oh, and as you’ve probably noticed, 'combinatorics', 'hand combinations' and 'combos' refer to the same thing in poker. Don’t get confused if I use them interchangeably, which I probably will.

What is poker combinatorics?

Poker combinatorics involves working out how many different combinations of a hand exists in a certain situation.

For example:

  • How many ways can you be dealt AK?
  • How many ways can you be dealt 66?
  • How combinations of T9 are there on a flop of T32?
  • How many straight draw combinations are there on a flop of AT7?

Using combinatorics, you will be able to quickly work these numbers out and use them to help you make better decisions based on the probability of certain hands showing up.

Poker starting hand combinations basics.

  • Any two (e.g. AK or T5) = 16 combinations
  • Pairs (e.g. AA or TT) = 6 combinations

If you were take a hand like AK and write down all the possible ways you could be dealt this hand from a deck of cards (e.g. A K, A K, A K etc.), you would find that there are 16 possible combinations.

See all 16 AK hand combinations:

Similarly, if you wrote down all the possible combinations of a pocket pair like JJ (e.g. JJ, JJ, JJ etc.), you would find that there are just 6 possible combinations.

See all 6 JJ pocket pair hand combinations:

So as you can see from these basic starting hand combinations in poker, you’re almost 3 times as likely to be dealt a non-paired hand like AK than a paired hand. That’s pretty interesting in itself, but you can do a lot more than this…

Note: two extra starting hand combinations.

As mentioned above, there are 16 combinations of any two non-paired cards. Therefore, this includes the suited and non-suited combinations.

Here are 2 extra stats that give you the total combinations of any two suited and any two unsuited cards specifically.

  • Any two (e.g. AK or 67 suited or unsuited) = 16 combinations
  • Any two suited (AKs) = 4 combinations
  • Any two unsuited (AKo) = 12 combinations
  • Pairs (e.g. AA or TT) = 6 combinations

You won’t use these extra starting hand combinations nearly as much as the first two, but I thought I would include them here for your interest anyway.

It’s easy to work out how there are only 4 suited combinations of any two cards, as there are only 4 suits in the deck. If you then take these 4 suited hands away from the total of 16 'any two' hand combinations (which include both the suited and unsuited hands), you are left with the 12 unsuited hand combinations. Easy.

Fact: There are 1,326 combinations of starting hands in Texas Hold’em in total.

Working out hand combinations using 'known' cards.

Let’s say we hold KQ on a flop of KT4 (suits do not matter). How many possible combinations of AK and TT are out there that our opponent could hold?

Unpaired hands (e.g. AK).

How to work out the total number of hand combinations for an unpaired hand like AK, JT, or Q3.

Method: Multiply the numbers of available cards for each of the two cards.
Word equation: (1st card available cards) x (2nd card available cards) = total combinations

Example.

If we hold KQ on a KT4 flop, how many possible combinations of AK are there?

There are 4 Aces and 2 Kings (4 minus the 1 on the flop and minus the 1 in our hand) available in the deck.

C = 8, so there are 8 possible combinations of AK if we hold KQ on a flop of KT4.

Paired hands (e.g. TT).

How to work out the total number of hand combinations for an paired hand like AA, JJ, or 44.

Method: Multiply the number of available cards by the number of available cards minus 1, then divide by two.
Word equation: [(available cards) x (available cards - 1)] / 2 = total combinations

Example.

Total Possible Poker Hands Against

How many combinations of TT are there on a KT4 flop?

Well, on a flop of KT4 here are 3 Tens left in the deck, so…

C = 3, which means there are 3 possible combinations of TT.

Thoughts on working out hand combinations.

Working out the number of possible combinations of unpaired hands is easy enough; just multiply the two numbers of available cards.

Working out the combinations for paired hands looks awkward at first, but it’s not that tricky when you actually try it out. Just find the number of available cards, take 1 away from that number, multiply those two numbers together then half it.

Possible

Note: You’ll also notice that this method works for working out the preflop starting hand combinations mentioned earlier on. For example, if you’re working out the number of AK combinations as a starting hand, there are 4 Aces and 4 Kings available, so 4 x 4 = 16 AK combinations.

Why is combinatorics useful?

Because by working out hand combinations, you can find out more useful information about a player’s range.

For example, let’s say that an opponents 3betting range is roughly 2%. This means that they are only ever 3betting AA, KK and AK. That’s a very tight range indeed.

Now, just looking at this range of hands you might think that whenever this player 3bets, they are more likely to have a big pocket pair. After all, both AA and KK are in his range, compared to the single unpaired hand of AK. So without considering combinatorics for this 2% range, you might think that the probability break-up of each hand looks like this:

  • AA = 33%
  • KK = 33%
  • AK = 33%

…with the two big pairs making up the majority of this 2% 3betting range (roughly 66% in total).

However, let’s look at these hands by comparing the total combinations for each hand:

  • AA = 6 combinations (21.5%)
  • KK = 6 combinations (21.5%)
  • AK = 16 combinations (57%)

So out of 28 possible combinations made up from AA, KK and AK, 16 of them come from AK. This means that when our opponent 3bets, the majority of the time he is holding AK and not a big pocket pair.

Now obviously if you’re holding a hand like 75o this is hardly comforting. However, the point is that it’s useful to realise that the probabilities of certain types of hands in a range will vary. Just because a player either has AA or AK, it doesn’t mean that they’re both equally probable holdings - they will actually be holding AK more often than not.

Analogy: If a fruit bowl contains 100 oranges, 1 apple, 1 pear and 1 grape, there is a decent range of fruit (the 'hands'). However, the the fruits are heavily weighted toward oranges, so there is a greater chance of randomly selecting an orange from the bowl than any of the 3 other possible fruits ('AK' in the example above).

This same method applies when you’re trying to work out the probabilities of a range of possible made hands on the flop by looking at the number of hand combinations. For example, if your opponent could have either a straight draw or a set, which of the two is more likely?

Poker combinatorics example hand.

You have 66 on a board of A J 6 8 2. The pot is $12 and you bet $10. Your opponent moves all in for $60, which means you have to call $50 to win a pot of $82.

You are confident that your opponent either has a set or two pair with an Ace (i.e. AJ, A8, A6 or A2). Don’t worry about how you know this or why you’re in this situation, you just are.

According to pot odds, you need to have at least a 38% chance of having the best hand to call. You can now use combinatorics / hand combinations here to help you decide whether or not to call.

Poker combinatorics example hand solution.

First of all, let’s split our opponent’s hands in to hands you beat and hands you don’t beat, working out the number of hand combinations for each.

Adding them all up…

Seeing as you have the best hand 79% of the time (or 79% 'equity') and the pot odds indicate that you only need to have the best hand 38% of the time, it makes it +EV to call.

So whereas you might have initially thought that the number of hands we beat compared to the number of hands we didn’t beat was close to 50/50 (making it likely -EV to call), after looking at the hand combinations we can see that it is actually much closer to 80/20, making calling a profitable play.

Being able to assign a range to your opponent is good, but understanding the different likelihoods of the hands within that range is better.

Poker combinatorics conclusion.

Working out hand combinations in poker is simple:

  • Unpaired hands: Multiply the number of available cards. (e.g. AK on an AT2 flop = [3 x 4] = 12 AK combinations).
  • Paired hands: Find the number of available cards. Take 1 away from that number, multiply those two numbers together and divide by 2. (e.g. TT on a AT2 flop = [3 x 2] / 2 = 3 TT combinations).
Many

By working out hand combinations you can gain a much better understanding about opponent’s hand ranges. If you only ever deal in ranges and ignore hand combinations, you are missing out on useful information.

It’s unrealistic to think that you’re going to work out all these hand combinations on the fly whilst you’re sat at the table. However, a lot of value comes from simply familiarising yourself with the varying probabilities of different types of hands for future reference.

For example, after a while you’ll start to realise that straight draws are a lot more common than you think, and that flush draws are far less common than you think. Insights like these will help you when you’re faced with similar decisions in the future.

The next time you’re doing some post session analysis, spend some time thinking about combinatorics and noting down what you find.

Poker combinatorics further reading.

Hand combinations in poker all stem from statistics. So if you’re interested in finding out more about the math side of things, here are a few links that I found helpful:

  • Combinations video - Youtube (all the stuff on this channel is awesome)

If you’re more interested in finding out more about combinations in poker only, here are a few interesting reads:

Go back to the awesome Texas Hold'em Strategy.

Comments

A pair of aces is the best pre-flop hand in Texas Hold'em Poker

In the poker game of Texas hold 'em, a starting hand consists of two hole cards, which belong solely to the player and remain hidden from the other players. Five community cards are also dealt into play. Betting begins before any of the community cards are exposed, and continues throughout the hand. The player's 'playing hand', which will be compared against that of each competing player, is the best 5-card poker hand available from his two hole cards and the five community cards. Unless otherwise specified, here the term hand applies to the player's two hole cards, or starting hand.

Essentials[edit]

There are 1326 distinct possible combinations of two hole cards from a standard 52-card deck in hold 'em, but since suits have no relative value in this poker variant, many of these hands are identical in value before the flop. For example, AJ and AJ are identical in value, because each is a hand consisting of an ace and a jack of the same suit.

Therefore, there are 169 non-equivalent starting hands in hold 'em, which is the sum total of : 13 pocket pairs, 13 × 12 / 2 = 78 suited hands and 78 unsuited hands (13 + 78 + 78 = 169).

These 169 hands are not equally likely. Hold 'em hands are sometimes classified as having one of three 'shapes':


  • Pairs, (or 'pocket pairs'), which consist of two cards of the same rank (e.g. 99). One hand in 17 will be a pair, each occurring with individual probability 1/221 (P(pair) = 3/51 = 1/17).
Hands
Alternative means of making this calculation

Total Possible Poker Hands Games

First Step
As confirmed above.
There are 1326 possible combination of opening hand.
Second Step
There are 6 different combos of each pair. 9h9c, 9h9s, 9h9d, 9c9s, 9c9d, 9d9s. Therefore, there are 78 possible combinations of pocket pairs (6 multiplied by 13 i.e. 22-AA)
To calculate the odds of being dealt a pair
78 (the number of any particular pair being dealt. As above) divided by 1326 (possible opening hands)
78/1326 = 0.058 or 5.8%
Total possible poker hands games


  • Suited hands, which contain two cards of the same suit (e.g. A6). 23.5% of all starting hands are suited.

Probability of first card is 1.0 (any of the 52 cards)Probability of second hand suit matching the first:There are 13 cards per suit, and one is in your hand leaving 12 remaining of the 51 cards remaining in the deck. 12/51=.2353 or 23.5%


  • Offsuit hands, which contain two cards of a different suit and rank (e.g. KJ). 70.6% of all hands are offsuit hands

Offsuit pairs = 78Other offsuit hands = 936

It is typical to abbreviate suited hands in hold 'em by affixing an 's' to the hand, as well as to abbreviate non-suited hands with an 'o' (for offsuit). That is,

QQ represents any pair of queens,
KQ represents any king and queen,
AKo represents any ace and king of different suits, and
JTs represents any jack and ten of the same suit.

Limit hand rankings[edit]

Some notable theorists and players have created systems to rank the value of starting hands in limit Texas hold'em. These rankings do not apply to no limit play.

Sklansky hand groups[edit]

David Sklansky and Mason Malmuth[1] assigned in 1999 each hand to a group, and proposed all hands in the group could normally be played similarly. Stronger starting hands are identified by a lower number. Hands without a number are the weakest starting hands. As a general rule, books on Texas hold'em present hand strengths starting with the assumption of a nine or ten person table. The table below illustrates the concept:

Chen formula[edit]

The 'Chen Formula' is a way to compute the 'power ratings' of starting hands that was originally developed by Bill Chen.[2]

Highest Card
Based on the highest card, assign points as follows:
Ace = 10 points, K = 8 points, Q = 7 points, J = 6 points.
10 through 2, half of face value (10 = 5 points, 9 = 4.5 points, etc.)
Pairs
For pairs, multiply the points by 2 (AA=20, KK=16, etc.), with a minimum of 5 points for any pair. 55 is given an extra point (i.e., 6).
Number of possible poker hands
Suited
Add 2 points for suited cards.
Closeness
Subtract 1 point for 1 gappers (AQ, J9)
2 points for 2 gappers (J8, AJ).
4 points for 3 gappers (J7, 73).
5 points for larger gappers, including A2 A3 A4
Add an extra point if connected or 1-gap and your highest card is lower than Q (since you then can make all higher straights)

Phil Hellmuth's: 'Play Poker Like the Pros'[edit]

Phil Hellmuth's 'Play Poker Like the Pros' book published in 2003.

TierHandsCategory
1AA, KK, AKs, QQ, AKTop 12 Hands
2JJ, TT, 99
388, 77, AQs, AQ
466, 55, 44, 33, 22, AJs, ATs, A9s, A8sMajority Play Hands
5A7s, A6s, A5s, A4s, A3s, A2s, KQs, KQ
6QJs, JTs, T9s, 98s, 87s, 76s, 65sSuited Connectors

Statistics based on real online play[edit]

Statistics based on real play with their associated actual value in real bets.[3]

TierHandsExpected Value
1AA, KK, QQ, JJ, AKs2.32 - 0.78
2AQs, TT, AK, AJs, KQs, 990.59 - 0.38
3ATs, AQ, KJs, 88, KTs, QJs0.32 - 0.20
4A9s, AJ, QTs, KQ, 77, JTs0.19 - 0.15
5A8s, K9s, AT, A5s, A7s0.10 - 0.08
6KJ, 66, T9s, A4s, Q9s0.08 - 0.05
7J9s, QJ, A6s, 55, A3s, K8s, KT0.04 - 0.01
898s, T8s, K7s, A2s0.00
987s, QT, Q8s, 44, A9, J8s, 76s, JT(-) 0.02 - 0.03

Total Possible Poker Hands Game

Nicknames for starting hands[edit]

In poker communities, it is common for hole cards to be given nicknames. While most combinations have a nickname, stronger handed nicknames are generally more recognized, the most notable probably being the 'Big Slick' - Ace and King of the same suit, although an Ace-King of any suit combination is less occasionally referred to as an Anna Kournikova, derived from the initials AK and because it 'looks really good but rarely wins.'[4][5] Hands can be named according to their shapes (e.g., paired aces look like 'rockets', paired jacks look like 'fish hooks'); a historic event (e.g., A's and 8's - dead man's hand, representing the hand held by Wild Bill Hickok when he was fatally shot in the back by Jack McCall in 1876); many other reasons like animal names, alliteration and rhyming are also used in nicknames.

Number Of Possible Poker Hands

Notes[edit]

Possible Poker Hand Combinations

  1. ^David Sklansky and Mason Malmuth (1999). Hold 'em Poker for Advanced Players. Two Plus Two Publications. ISBN1-880685-22-1
  2. ^Hold'em Excellence: From Beginner to Winner by Lou Krieger, Chapter 5, pages 39 - 43, Second Edition
  3. ^http://www.pokerroom.com/poker/poker-school/ev-stats/total-stats-by-card/[dead link]
  4. ^Aspden, Peter (2007-05-19). 'FT Weekend Magazine - Non-fiction: Stakes and chips Las Vegas and the internet have helped poker become the biggest game in town'. Financial Times. Retrieved 2010-01-10.
  5. ^Martain, Tim (2007-07-15). 'A little luck helps out'. Sunday Tasmanian. Retrieved 2010-01-10.

How Many Possible Poker Hands

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Texas_hold_%27em_starting_hands&oldid=989142522'